
Journal of Statistical Physics, VoL 31, No. 3, 1983 

A Probabilistic Approach to the Models 
of Spin Glasses 

. .  tt 1 Andras Suto, Tarik Yalcin, 2 and Christian Gruber 2 

Received August 24, 1982 

Introducing the notions of quenched and annealed probability measures, a 
systematic study of some problems in the description of spin glasses is at- 
tempted. Inequalities and variational principles for the free energies are derived. 
The absence of spontaneous breakdown of the gauge symmetry is discussed and 
some high-temperature properties are studied. Examples of annealed models 
with more than one phase transition are shown. 
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1. I N T R O D U C T I O N  

A commonly accepted way to describe disordered systems is to represent 
them by statistical ensembles in which the degrees of freedom are coupled 
by random interactions. This additional randomness may be treated in 
different ways: Random interactions may be considered as new degrees of 
freedom, and in extreme cases they may be in thermal equilibrium with the 
rest of the system (annealed state) or completely frozen in some random 
position (quenched state). Many years after the pioneering work of Brout (~) 
the quenched state of certain spin models became the center of interest of 
the theoretical research on spin glasses. Edwards and Anderson (2) pointed 
out that these systems can properly be described by the quenched state of 
randomly interacting spin models on regular lattices. Meanwhile, one 
encounters two main difficulties: the first is to calculate, in a respectable 
approximation, the quenched free energy, and the second is to give a 
reliable proof that there exists a phase transit ion--in the static sense--  
between the high-temperature paramagnetic and the low-temperature spin 
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glass state. Neither of these problems has got so far a reassuring solution, 
excepted probably in the case of the so-called Sherrington-Kirkpatrick 
model.( 3~ 

While not pretending to contribute to the solution of these great 
questions, in the present paper we attempt a systematic study of what were 
called the "annealed" and "quenched" states. To this end we define in 
Section 2 the annealed and quenched probability measures which play the 
same role as the Gibbs measure in equilibrium systems. In Section 3 we 
derive some inequalities for the quenced free energy, and in Section 4 we 
establish a variational principle characterizing both the annealed and 
quenched free energies in the space of the joint probability distributions for 
spins and bonds. In Section 5 we raise the question of the uniqueness of the 
quenched state and show that the gauge invariance cannot be broken by 
different choices for the boundary condition. This suggests that the "order 
parameter" of the spin glass state must be the expectation value of a 
gauge-invariant and nonlocal observable. The order parameter, proposed 
by Edwards and Anderson, (2~ has indeed these properties, as we point out 
in Section 6. A discussion of high-temperature properties is also given there 
and the functional relationship between order parameter and free energy is 
established. Finally in Section 7 we return to the study of annealed models 
and give examples for one, two, and three consecutive phase transitions in 
such models. 

2. DEFINITION OF THE SYSTEM 

Let L be a lattice; at each site i of L is associated a single spin space S, 
where S is a subset of R ~. The spin configurations are defined by o : L ~ S 
and the formal Hamiltonian of the system is given as 

H ( J , ~ )  = - E Jb+b(~ (2.1) 
b c L  

Here the 0b's are bounded, real-valued functions depending on o b = (oi; 
i ~ b} and the Jb's are real random variables with probability distribution 
dob the mean value of which is finite. The finite partial sums of (2.1) are 
well defined for any o with p probability 1. In particular, 

H v ( J , o  ) = - ~,, Jbob(o) (2.2) 
b e y  

exists for all finite V c L. 
On S is given an a priori finite measure dtt0 not necessarily normalized 

and dt~v(O) denotes 1-Iievdt, o(Oi), while d p v ( J ) =  1-Ibcvdpb(Jb). In the 
following discussion we consider only finite volumes and we omit the 
label V. 
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For given interactions J, the free energy F(J) and the equilibrium state 
at inverse temperature/3 are defined as usual by 

e-ee(s) = f dt,(o ) e-l~I4(J'~ (2.3) 

and by the Gibbs probability measure 

de, (0) = g(J, o) d~(o) 

where 

g(J, o) = e fi[F(J) -H(J,o)] (2.4) 

(2.4) can also be written as 

1 In gd ,  o) (2 .5)  F(J) = I I(J,o) + -~ 

which yields (since the Gibbs measure is normalized) 

F(J) = f d.(o) g(J,o)[ H(J,o) + -~ ln g(J,a) ] 

= E(J) - -~ S(J) (2 .6)  

The quenched free energy ff and the quenched state are defined by 

l fao(J) ln[fg,(o)e-e 'c(J '~ (2.7) P = fdo(J)  F(J) = 

and by the quenched probability measure 

dQ(J, o) = g(J, o) dl~(a) do(J ) (2.8) 

which yields 

! - (2 .9)  f f = i d Q ( J , o ) [ H ( J , o ) + - ~ l n g ( J , o ) ] = E - - ~ S  

We shall impose that the distribution dOb(X) falls off sufficiently rapidly so 
that ff is well defined. 

The annealed free energy Fan and the annealed state are defined by the 
prescription that the average over the interactions has to be performed in 
the partition function, i.e., 

l lnlfdp(J)e-BF(:) 1 = -  -~lnlfdp(J)d~(a)e-~mJ'~ ] 
&"= B 

(2.10) 

and by the annealed probability measure 

dA (J,o) = h(J,o)dl~(o)do(J ) 
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where 

i.e., 

which yields 

h(J,o) = e fi[Fa'-H(J'~ 

Fan = H(J,o) + l lnh(J,o) p 

(2.11) 

(2.12) 

F~n=fdA(J,o)[H(J,o)+ - ~ l n h ( J , o ) ] - -  E a . -  1BSan (2.13) 

Introducing the space ~ of joint probability distributions 

= (f=f(J,a);f(J,o)>>O fdpd . f=l} (2.14) 

and the free energy functional F[f] defined on ~ by 

�9 l l n f ( J , o )  15) ](. 
we can express ff and Fan, respectively, as 

i f =  F I g], Fan = F[h 1 
subset B = (b I . . . . .  bk) of b's in Finally, for any 

= (Jb)beB and 

(2.16) 

V we introduce J~ 

ff(J~ ) - -  f b~cvdOb(Jb)F(J) (2.17) 

b~B 
which implies in particular 

P (J~)  = F ( J )  

P(J~  ) = P 

if B = ( b ; b c V )  

if B - O  

Let us note that for any J~ = (J~)b~e,  ff(J~) represents the quenched free 
energy with respect to the new measure do'(J ) where 

do'(J) = H dDb(Jb) H ~(Jb-- J;)dJb 
bcV b~B 
b~B 

3. INEQUALITIES OF THE QUENCHED FREE ENERGY 

In this section we first collect inequalities for  ff(JB); we then discuss 
the dependence of ff on the distribution do. 

Proposition 3.1. 

(i) F ( : 8  ) < ff(~ ') for any B C B' (3.1) 
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where a~b = fdob(x) x; 
(ii) F~,, < F ~< F(f) (3.2) 

The proof of (i) follows from Jensen's inequality using the known fact that 
F(J) is a concave function of each Jb's and thus F(Je) is also a concave 
function of each Jb's, b E B. The proof of (ii) follows from Jensen's 
inequality using the fact that F = - f l  In Q is a convex functional of the 
partition function Q. 

This proposition was earlier published by Rosa(4); as mentioned in 
Section 2, the inequalities (3.1) can be regarded as the comparison of two 
different averages of the same function F(J) ;  we thus have 

f dplF<, f dp2F (3.3) 

where the probability measure do: is sharper than dov 
The question naturally arises whether (3.3) is generally true, i.e., 

whether a "sharpening" of the distribution causes the quenched free energy 
to increase. The inverse problem is also of interest: does a broadening 
decrease F?  At first we show that the broadening problem can always be 
solved. 

Lemma 3.1. Let f =  N ~ N  be concave and let O and p be two 
probability measures on R such that 

(i) f dp(x) f(x) exists 

(ii) f dv(x)x= 0 and 

fdp(x) f(x + exists for al ly in Y) 

then 

f d(o * ~,)(x) f(x) <~ f do(y) f(y) (3.4) 

where d(o * l,) denotes the convolution of the measures. 

Proof. Using Jensen's inequality together with fdv(x)x = 0 implies 

f d,(x) f(x) f d,(x) f d,(y) f(x + y)i_ f d(,,,)(y) f(y) 
This lemma can be immediately extended to concave functions of several 
variables and implies the following result. II 

ProposiUon 3.2. Let {dpb}, b C V, be a set of probability measures 
with zero mean and such that fIIbcvdPb(Jb)F(Jb + Jb) exists for all J ;  
then 

fd@, --.fdo(J) F(J) = P (3.5) 
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Remarks. 1. If E denotes the mean value and 2x 2 the mean square 
2 2 2 deviation then E o, ~ = E o + E, and 2xp, ~ = A 0 + A .  Hence in Proposition 

3.2 we have Ep, ,  = Ep and 2x20, ~/> A2 o, so that 0 * 1, is indeed broadened in 

comparison to O and does decrease F. 
2. Replacing dpb by d(o * Vb) corresponds to replacing Jb by Jb + ~b 

where (b is a random variable independent of Jb and distributed according 
t o  dv b . 

3. The inequalities (3.1) follow from this theorem if in the latter we 
replace Oh(x) by ~(x - Jb) for b E B'  and take 

Vb(X ) = 8 ( x )  for b ~ B '  and b E B  

vb( x ) = p b ( x + J b )  for b E B ' / B  

In view of the second remark, the sharpening problem can be formulated in 
this way: given a random variable Jb we have to find a nontrivial decompo- 
sition of Jb into the sum of two independent random variables, one of them 
having zero mean. This problem cannot be generally solved. However, if 
the Jb's are Gaussian random variables, then such a decomposition is 
possible (s) and we have the following result. 

Proposition 3.3. Consider the quenched free energy associated with 
the two different set of Gaussian distributions {Oh (l)} and (Oh (2)} such that 
Eo~o = Ep~2~ and A2p~,~ > A20~2~ for all b. Then 

f do("(J)F(J) < f dp(2)(J)F(J) (3.6) 

Proof. Let ub be the Gaussian measure with zero mean and mean 
square deviation A ~ , -  A~L2 ~. Then Ob (1) = pb(2)* Ub and the statement follows 
from Proposition 3.2. �9 

There is another way to generalize the inequality (3.1) which shows 
that the approximation of a given distribution with a suitably chosen 
discrete distribution results in the increase of the quenched free energy. The 
better the discrete distribution approaches the original one the smaller is 
the upper bound. 

Proposition 3.4. Let dob(x) = dob ( -  X) for all b and let 

dvb(X)=�89 1 where [~ l=fdob(x ) ]x l  

then 

P <fd.(J)F(J) <<. F(J )  

Proof. We may fix the interactions with the exception of the single Jb 
and it is sufficient to show that for the concave function F(Jb) the 
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inequalities 

f_ F(x) dOb(x) < �89 F(]JT]) + F ( -  I~-b I)] ~< F(O) 

hold. Here the second inequality comes from the definition of a concave 
function. Now 2dob is a probability measure on both R + and N- and hence 

l 
But 

- 2  x x = x x 2 x dob x = b 

which concludes the proof. �9 
The generalization of this proposition for noneven distributions and 

for more detailed partitions of the support of O is easy and we leave it to the 
reader. 

4. V A R I A T I O N A L  P R I N C I P L E S  

The existence of a variational principle for the free energy is a 
manifestation of equilibrium. Since the quenched system is not in equilib- 
rium we cannot expect that a variational principle completely analogous to 
that of equilibrium systems will also hold for F. In mean field calculation 
(Edwards and Anderson, (2) Sherrington and Kirkpatrick O)) the free energy 
of the quenched state at low temperature is above the continuation from 
high temperature, this continuation being essentially the annealed free 
energy (see Proposition 3.1). In this section we give some insight on this 
mean field result by showing that the quenched free energy satisfies a 
variational principle on a subspace ~0 of the space ~ (2.14); on the other 
hand, the annealed free energy satisfies a variational principle on the whole 
space ~ .  

Let us recall that for given interaction J, the variational principle for 
the finite volume free energy is expressed by the inequality 

F ( J )  = F[J; gs] < F[J; f l  (4.1) 

where the free energy functional is defined by 

1 I n / ( a )  (4.2) F[J; f] = fd (a) f ( a )  H(J ,  o) + 

on the space of distribution funct ionsf  = f (a) ,  and gj = g(J, a) is the Gibbs 
function (2.4). 
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Indeed the inequality (4.1) is a consequence of the inequality 

f dl~(o) f(o)ln g(J'~ ) 0 1 
F[ J; f] - F[ J] = fl f(o-----~ 

For random systems we consider the free energy functional (2.15) defined 
on ~ and we also introduce ~0 the subspace of ~ defined by 

~o= { f =  f(J,o); f(J,o) > O, f dp.(o) f (J ,o)= l, VJ } (4.3) 

Proposition 4.1, 

(1) Fan = F[ h ] = }ni~F[ f l  

(2) For a n y f  ~ 

F[ f] - f dp(J)d (o) f (J ,e)F(J)  >1 0 

and the equality holds for f  = g(J, o) 

(3) i f=  F[ g] = rain r [ f ]  
fE~0 

(4.4) 

(4.5) 

(4.6) 

Proof. 

(2) 

(1) Using the definitions (2.12), (2.13), (2.15), we have 

h(J,o) 
1 fdo(S)d (o) f(J,o)lnf---~,-~,o~ > 0 g [  f l  -- Fan "~" 

F[ f] - f do(J) d~(o) f(J, o)F(J) 

1 ) (dp(J)dl t(o)f( j ,o) l  n g(d,o) 
fl f(J, o) 

(3) Using (4.5) we have for any f ~ ~0 

FI f] > ff 
which concludes the proof. �9 

> 0  

Another way to formulate the above result is the following: In the 
space ~ of the joint probability distributions the minimization of F[f] 
yields the annealed free energy, while the quenched free energy is obtained 
by minimizing the difference (4.5). 

To conclude this section we remark that the quenched entropy S and 
the annealed entropy San are not necessarily positive for the scales of the 
entropies depend on the norm chosen for the a priori measure 1%. Indeed 
changing go to C/% will change S(J) [(2.6)1 to S(J)+lVllnC. If the 
normalization of/% is chosen so that S(J) >1 0 [e.g., if g(J, o) ~< 1 for all 
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(J,o)] then the quenched entropy S will be nonnegative; however, the 
annealed entropy may still be negative, in particular for large values of/?. 
As an example we consider the Ising spin �89 model, i.e., 

dt~o(a ) = [3(0 - 1) + 6(a + 1)] do (4.6a) 

For such systems we can always write the interactions q'b in the form 

 b(o) = II  oi 
iEb 

If the probability distributions of the interactions satisfy 

dpb(x ) = dpb ( -- x) (4.6b) 

we then obtain 

and 
-E l Fa " =  fll [Viln2 + b c v  ~ ln~e, dob(x) (4.7) 

fxe#Xdpb(x ) ] 
San = Iglln2 + ~2 ln(e#XdPb(x) -- B (4.8) 

bcv L -- fe ~xdpb(x) 

This shows that S.n goes to [V[ln2 if/3 goes to zero and Pb can be 
chosen so that San goes to minus infinity with fl going to infinity. 3 
Therefore one can imagine that underestimating F with an improper choice 
of f in ~ may result that F[f] approaches Fan sufficiently closely that a 
negative entropy will be obtained for large values of ft. 

5. STABILITY OF THE GAUGE SYMMETRY UNDER BOUNDARY 
PERTURBATION 

The boundary conditions play a predominant role in the definition of 
infinite volume equilibrium states. In particular if the Hamiltonian has 
some internal symmetries the interaction with the fixed boundary spins 
breaks the symmetry and may lead to a "spontaneous breakdown" of this 
symmetry in the thermodynamic limit. 

The random Hamiltonian (2.1) has also internal symmetries. However 
we shall show in this section that in "pure" models of spin glasses the gauge 
symmetry cannot be broken by the boundary conditions. This implies that 
a spin glass cannot generally be characterized by a local order parameter, 
in fact the order parameter proposed by Edwards and Anderson (2) is the 
expectation value of a nonlocal quantity taken with the measure (2.8) [see 
(6.2)]. This order parameter can be considered as a local observable only if 

3 For example, dpb(x ) =Pb(X)dX and Pb are Gaussian distributions with bounded mean 
deviations. 
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one introduces the so-called replicas; in this case, however, one looses the 
clear description of the quenched states as probability measures. This 
explains somewhat the difficulty to prove the existence of phase transitions 
in quenched models. 

In this section we consider Hamiltonians of the form 

H(J ,o)  = - • ~ Jb,~ I I  o,,~= - E J b %  (5.1) 
b a = l  i @ b  

where oi, ~ is the ath component of the spin at site i, and the Jb,~'s are 
independent random variables. 

We assume that the interactions have finite range, i.e., there exists 
some R > 0 such that Jb,~ is strictly zero for any b with diam(b) > R. 
Furthermore we consider only "pure" models of Spin glasses, i.e., models 
with even distribution for each interaction: 

dpb,~(x ) = dOb,, ( -  x) (5.2a) 

Finally we assume that the a priori measure /z 0 on S c R~ is even in all 
components: 

~o(SIO1 . . . .  , s.o.) = d~0(o ~ . . . . .  on) (5.2b) 

V ( s l  . . . . .  s . ) ,  s i = +_ 1 

Let J (s ~ ~i@L . = = lsi,~)l.<<~< ~, s~,~ = _+ 1}; for any s in J we introduce the 
automorphism ~-, defined on the algebra of local observables by 

(%f)(J, o) = f(sJ,  so) (5.3) 

where 

i E b  

( S O ) i , a  = S i , a o i ,  a 

These transformations are internal symmetries of the system, since they 
leave the Hamiltonian and the measure invariant, i.e., 

% H = H  

and 

dr(so)  = dr(o) ,  do( J) = dp(J)  

Let us note that J is a group of gauge transformations since it is generated 
by transformations involving only a finite number of lattice sites. We shall 
not consider other symmetries the system might also have. 

We are interested in local observables of the form 

f (J ,  o) = I-I J~a ~ I-I oim,~ i'B (5.4) 
b , a  i , f l  
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w h e r e  rib, ~ and mi,/3 are nonnegative integers which are different from zero 
only for a finite number of b's and i's. We introduce the notation 

s u p p f =  [,3 b [..J ( i } c L  
b : nb,~v~0 i : rni,/~4-0 

For any f of the form 5.4 we have 

~-sf= ( -  l)Nj(')f 

Nf(s) = ~nb,~lV~(s) N b[ + E rni,3[V~(s) (~ (i}] 

V~(s) = ( j  E L; sj,~ -- - 1) 

and therefore f is gauge breaking, i.e., ~ff @ f, if Nf(so) is odd for some s o in 
J ,  in which case 

= - f 

From the invariance property of H v and dQv we have immediately the 
following result. 

Proposit ion 5.1. Let f be any gauge-breaking observable of the form 
(5.4). Then 

f f dQv= o 

if V D supp f. (A similar result was obtain by Avron et al.(6) in the case 
where f is a pure product of Ising spins.) 

To show the absence of spontaneous breakdown of this gauge symme- 
try we consider quenched states with boundary conditions dQ(v b'c'). Such 
states are defined through (2.8) by the Hamiltonian 

b A  Vv~O 

together with the boundary conditions 

G i = 3 i if i ~ g (5.5) 
if b e  v 

For example, for "free" boundary conditions for 0b,~ (X) = 6 (X); for "fixed" 
boundary conditions #b,~(x)= 6(x -Jb,~)" 

Proposit ion 5.2. Let f be any gauge-breaking local observable of the 
form (5.4). Then for any boundary conditions (5.5) 

( f )  = f f dQ(vb~)= o 

if dist(supp f, V ~) > R. 
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Proof. Let us take s o in J such that " r s 0 f = - f  and s i = l  for i 
outside supp f. The measure dQ(v bc') is then invariant under this transfor- 
mation and yields <f> = - <f> = 0. �9 

We notice that this theorem does not exclude the existence of a phase 
transition in the sense that different weak limits of the quenched measures 
dQ(v bc') can be obtained, i.e., the possibility still stands for the non- 
uniqueness of the expectation value of some local gauge-invariant quantity. 
However, as far as we know, such a hypothesis has never appeared in the 
literature and can be qualified as "unphysical." An eventual spin glass 
transition is expected to be characterized by a singularity in the thermody- 
namic functions and in a nonlocal order parameter. This we discuss in the 
following section. 

6. THE EDWARDS-ANDERSON ORDER PARAMETER 

The order parameter q proposed by Edwards and Anderson (2) to 

describe the spin glass transition is defined as <l<a0>l 2> where the first 
average is the thermal one and the second is taken over the interactions. In 
order to obtain a nonzero value one has to choose some boundary condi- 
tions. We take for the distribution of interactions Jb,~ across the boundary 
the same distribution dob,~ as the one defining the system and for the 
external spins some configuration 8; we denote dQSv the quenched state 
associated with this boundary condition. With our notation the order 
parameter q is the thermodynamic limit of 

. = 1 a ) a o , .  

= ( 6 . 1 )  

provided this limit exists. In (6.1) s gv(J, o) is the probability density (2.4) 
associated with the boundary condition 8. 

. ^ 

We note that q~ has two particular features: Firstly q~ is a nonlocal 
observable with respect to the quenched measure. Indeed 

qg - f o0<o0> v(J ) (6.2) 

and o0<Oo>~v(J) is nonlocal since its support is the whole volume occupied 
by the system. 

^ 

Secondly q~ is the expectation value of an observable which is invari- 
ant with respect to J v  = (s; s ~ J s i = 1 'qi ~ V}. Indeed for any s in J 
we have 

= 
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a '; therefore o0 , , (o , a )v ( J )  is invariant under any gauge transformation s in 
J v  (see also Avron et a/.(6)). 

Because of this gauge-invariance character q will not distinguish be- 
tween different gauge-breaking phases. It is, however, an order parameter 
in the sense that it is zero at high temperatures (Proposition 6.1) and is 
perhaps nonzero at low temperatures if the dimension of the lattice exceeds 
some finite value. As we shall see below (Proposition 6.2) q is independent 
of the boundary conditions & This behavior of q implies a new type of 
low-temperature phase--the spin glass--for the local moment ( ( a0 ) )  van- 
ishes at all temperatures in any model satisfying (5.2) (Proposition 6.3). 

ProposiUon 6.1. Let us consider Ising models (a i = ___ 1) with finite 
range even interactions 4 and even distribution of spins and bonds (5.2). 
Suppose the interactions are independent random variables and the num- 
ber of different distributions is finite. Then the order parameter q vanishes 
for sufficiently high temperature. 

Proof. Using Griffith's inequality (v) and [ao[ < 1 we find that 

q# = (l(ao>%(J)?> < (<ao>~(lJ[)> 

where ]J] = ([Jb[) and + means that the boundary spins are positive. Now 
let R be the range of the interaction and )~ = dist(0, VC). A generalization of 
Fisher's estimate for pair correlations using self-avoiding walks {s) gives 

(o0>~([J[) < ~ ~ '  tanh f i [ Je , [ ' ' "  t a n h  t~[Jb, ] (6.3) 
,,>X/R {b~... b,} 

Here the prime indicates that (b 1 . . . .  o bn) N V = {0} and there is no 
nonempty subset { b i , , . . . , b i k  } C  { b l , . . . , b n }  such that bi, o . . .  ob~k 
= 0 (A o B = A \ B  tO B \ A  is the usual symmetric difference of A and B). 

Supposing that the lattice is periodic and R is finite, there exists a 
constant C such that the number of sets { b l , . . . ,  bn} in (6.3) is smaller 
than C ~. Moreover, 

0 < f ?  t a n h  fl[x[dpb(x ) < e(t~) < l 
O0 

where E(fl) goes to zero with fl going to zero. Therefore, for small enough 
fi, C .  e(fi)  < 1 and 

< E [c. [c. (6.4) .>x/R f:: 

If V increases then 2t tends to oo and the right-hand side goes to zero. �9 

4 I.e., Jb -= 0 if [bl is odd.  
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In the following part of this section we discuss some formulas obtained 
for Ising models by gauge fixing. 

Proposition 6.2. Consider Ising models (oi = _+ 1) with even distri- 
bution (5.2) and let f(J, a) be a function of o/s for i ~ V and of Jb's for 
b C~ V ~ O. Then (i) if f is invariant under J r ,  

a ( j ,  * f dQv f= 21~l f dp(j) gy + )f(6j, + ) (6.5) 

where in M, 8 is extended to V with the value oi = 1 for i ~ V, and + 
denotes the configuration os = + 1; (ii) if f is gauge invariant, 

f dQSv f=  2wI f dp(j) g~ (j, + )f( j ,  + ) (6.6) 

Proof. Using the invariance property (5.2) and rsf = f for all s ~ J v  
we have 

gv (J, + )f(J, + ) 

= fd0(J)d~(o)  gy (J, +)fOY, +) = 2hvhfdp(j) gy (j, +)fOJ, +) 

which concludes the proof of (i) and (ii). �9 
Let us note that according to (6.6) the expectation value of any 

gauge-invariant quantity is independent of the boundary condition and can 
be obtained by "fixing the gauge" at o i = + 1 and then averaging with the 
probability distribution 

dg~ ( J )  = 21Vtg~ (j, + ) dp(J ) (6.7) 

Proposit ion 6.3. 
tions (5.2) 

((oA)V(~B)v) = 8A,B2 ~V~ 'C0(J) g~ (S, + ) ( ~ ) ~  
+ 

where A and B are subsets of V and 04 denotes 1-1/e~4o,.. 

Proof. For A = B (6.8) follows immediately from (6.6) since 

a _ (dQvoA<%)v(a)  

and 

For Ising models (o i = + 1) with even distribu- 

A 

(6.8) 

(6.9) 
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For A # B we can write 

<<oA>r162 f d, v(o o.oB{f ao(J> g#(J,o)oA<o.>r 
using the fact that 

and 

~'A<OA>5(J) = <O~>5(OJ) 

g~(J,o) = g~(oJ, +) 

we find 

which concludes the proof. [] 

Consequences of Proposition 6.3. (1) For A = B = (0} we find 

qr = ((0o) ~ >g+ (6.10) 

which shows that q is independent of the boundary conditions 8. 
(2) For A = {i) and B = {j} with i # j  we have 

((oi)v(oj>v) = 0 (6.11) 

This heuristically obvious result was used earlier (see, e.g., Fischer {9)) to 
conclude that the quenched susceptibility ~ is proportional to 1 - q; indeed 

1 X:v- ~ ~ (<<oioj>> - <<o,><oj>>) 
ij@ V 

1 
= TvT E (1 - <<o9>)  + 1 iE V - ~  E (<<OiOj>> -- <<Oi><Oj>>) 

i~ j  

Using Proposition 6.3 it follows that both terms in the second summation 
vanish while ((oi> 2> tends to q in the thermodynamic limit, at least for a 
translationally invariant state. 

(3) For any A ((oa>)  = 0 independent of the boundary conditions. (6} 
The inequality 

<(<OA58V)2> = fag?, (J) <q>;  (J) ~> 0 

suggests that dg~(J) favors the ferromagnetic interactions. This is correct 
in the following sense. 
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Proposition 6.4. For Ising models with even distributions (5.2), 

f Jbdg~ (J) >>. 0 (6.12) 

holds for all interactions. 

Proof. It is sufficient to show that g~ (J, +)  is an increasing function 
of Jb" Indeed, 

~g~ (J' +)  0 exp{ fiEb'n v~eJb ') 
~Jb OJb Eo, :,evexp{ fiEb'nV=/=OJb'Ob ') 

= Bg;  (J, + )  - Bg?~ (J, +)<o~>; > 0 [] 

Corollary. The averaged energy of any bond is nonpositive. 

Indeed, the averaged energy of the bond b is 

dQv-  - dg~ ) ,< -- f Jbob ~-- f Jb (J 0 (6.13) 

according to (6.6) and (6.12). 
To conclude this section we establish the connection between the order 

parameter q and the derivative of the quenched free energy, with respect to 
an external field h. Let FSv(J) be the free energy in volume V with 
boundary condition 3. Since Fay(J) is gauge invariant, (6.6) implies 

f F~aQ~= 21vI f F~ (s)gy (J)gy (J, +)do(J) (6.14) 

However, 

= f Fr f F?~ (J)do(J)= r~ (6.15) 

Therefore the quenched free energy is independent of the boundary condi- 
tion and 

;v = 21vl f F;  (J)g? (J, +)do(J) (6.16) 

Let now F~(J,h) be the free energy defined by the equation 

e x p [ - f l F ; ( J , h ) ]  = E exP(fl E Jb% +,Sh E oi] 
o r : i @ V  \ b N V v a O  i ~ V  I 

where o i = + 1 if i E V c. Let, moreover, 

Fv(h) = 2~vl f FY (J,h)g~ (J, + )dp(J) (6.17) 
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We should emphasize that in the above definition g~ does not depend on 
h. Therefore, fly(h) is not equal to the quenched free energy in the presence 
of a nonrandom external field, though fly(O)= fly. The reason for the 
introduction of fly(h) through Eq. (6.17) is that it is coupled to the 
averaged order parameter 

1 ~ qv(i ) (6.18) 
Qv= Igl ~~v 

where 

= 21~Jfap(j) gy (j, +)(oi>~(J) qv(i) 

just in the same way as in nonrandom models the free energy is coupled to 
the average magnetization: the' comparison of Eqs. (6.18) and (6.17) yields 

-(--V~ ff v(h) = Ov (6.19) 

Therefore, in a translationally invariant phase the order parameter q can be 
obtained as the thermodynamic limit of the left-hand side of Eq. (6.19), 
provided that this limit exists. 

7. ANNEALED MODELS WITH ONE, TWO, AND THREE PHASE 
TRANSITIONS 

The annealed models (see Section 2) are usually considered to be 
trivial and hence of no further interest. This opinion comes from the fact 
that an annealed model with even distributions for the bonds is in fact 
equivalent to a model without any interaction [see (4.7) and (7.2)]. 

Nontrivial results can be obtained either by introducing interactions 
among the bonds or by destroying the symmetry of their a priori distribu- 
tions. As an example to the former possibility we mention the Ashkin- 
Teller model (l~ in which two consecutive phase transitions were conjec- 
tured by Wegner (I~ and proved rigorously by Pfister. (~2) 

Here we exhibit simple examples of annealed models with asymmetric 
bond distribution, in which one, two, or three phase transitions take place 
as the temperature changes, depending on the choice of the lattice and of 
certain parameters. 

We shall consider only Ising models, i.e., a i = _+ 1; our discussion is 
based on the following simple observation: 

Let f =  f(a) be a local observable; then 

(f)an = f dA (J,o) f(o)= f d~(o) f(o)eflFa,~b f dOb(Jb )e BJ~~ 
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But o b = I-IiEbOi ~--- + 1 implies 

f dlz(o) f (o ) exp (~  bKb%) 

(f )an = fdla(o ) exp(E bKb%) 

where 

(7.1) 

</j> 

with nearest-neighbor interactions distributed according to 

O(Jij) = pS(J i j -  a i + (1 - p ) 6 ( J i j  + b), 

and the a priori even measure/% 

~to(O ) = 8 ( o -  1) + 8(a + 1) 

In this case (7.2) yields 

In [ t pe ~ + (1 - p)e -Bb 1 

Therefore for small/3 sign K = sign[a - ((1 - p)/p)b] 

for large/3 K ~ � 8 9  if a > b  

- � 8 9  if a < b  

a, b > 0 (7.3b) 

(7.3c) 

(7.4) 

l lnl  _ f dPb(x)e~X ] 
K b = ~ ~ f ~ e _ - 2 7  x = Kb(/3) (7.2) 

Equation (7.1) shows that the annealed system is equivalent to a spin-�89 
system with the same lattice and bond structure with fixed interactions 
Jb = (1//3)Kb(/3)" Therefore, the possible phase transitions of the annealed 
system can be investigated using the known phase transition of the spin-�89 
system. It should be stressed that the interactions Jb in the corresponding 
model are/3 dependent and this will lead to the existence of several phase 
transitions. One should also note that 

Ka (0) = 0 

and sign K b = sign[f do(x) sh/3x]. 
In particular, for small/3 

signK b = s i g n ( f d p ( x ) . x )  

To illustrate the possible existence of several phase transitions we restrict 
ourselves to the simplest annealed Ising models 

H = - ~ Jijo, oj (7.3a) 
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K J 

/ 
\ 

\ 

/ K 
/ 

//�89 

/ 
, "B 

. /  
- �89 1 - p  

f - -  

K 

\ 
x 

\ 

-I- -II- -III- 

(I) a > b  (II) a = b  (III) a < b  

1 - p  ( i ) - - a >  l - P b  (i) p > � 8 9  (i) a >  b 
p p 

1 - p  
1 ~ . .p  b ~ ( i i )  . . . .  a < b (ii) . . . .  a < (ii) . . . .  P < 7 p p 

In conclusion if the spin -1 system has an ordered phase for [K[ > K c, then 
the annealed system will have at least one phase transition in the case I and 
III; it will have at least one phase transition in the case lI if �89 [ ln(p/( l  - 
p))[ > Kc; it will have at least three phase transition in the case I-ii if 
Kmi n < - K C and in the case III-i if Kma • > K c. 

Proposition 7.1. Let us consider the annealed Ising model (7.3) with 
a = b -- J on a d-dimensional simple cubic lattice with d/> 2. Let K C be the 
critical value of the spin-�89 model with Jq = J > 0. Then, 

e2Kc 
(i) for P > P c - - -  (7.5) 

1 + e 2Kc 

there exists two ferromagnetically ordered phases for 

p(1 + e 2Kc) - e 2K, 

(ii) for p < 1 - P c  there exists two antiferromagnetically ordered 
phases for/3 > fl(1-p). 

Let us recall that for d = 2 we have sh2Kc = 1 which yieldspc = 1 / ~ - .  

Proof.  For a given p, K(/3) given by (7.4) is positive monotonically 
increasing if p > �89 (resp. negative monotonically decreasing if p < l )  and 

(7.5) implies that K(/3)  > K c for 13 > fie [resp. K(/3) < - K~ for/3 >/31-e], 
which concludes the proof. �9 
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Proposition 7.2. Let us consider the annealed Ising model (7.3) with 
b > a > O; then there exists somepc >�89 such that f o rp  >Pc: 

(i) On the d-dimensional simple cubic lattice with d >i 2, there exists 
O < f l o < f l l < f l 2 < o o  such that for /3<f lo  and for B l < f l < f l 2  there 
exists a unique (paramagnetic) equilibrium state, for fl0 < fl < ill, there 
exists a ferromagnetic ordering and for 13 > f12 there exists an anti- 
ferromagnetic ordering. 

(ii) On the two-dimensional triangular lattice there exists 0 < fi0 < fl, 
< oo such that for fl </30 and for/3 >/31 there exists a unique (paramag- 
netic) equilibrium state while for fl0 < fl </31, there exists a ferromagnetic 
ordering. 

Proof. Let ( = p/(1 - p); for fixed/3, K(( , /3)  Eq. (7.4) is an increas- 
ing function of ~ which tends to/3a as ( tends to infinity; therefore for any 
a maxCK (/3/~) > Kc if ( > (~. Furthermore OK~O~3 = 0 if fl is the solution 
of 

a~ 2 -- b 
ch(a + b) fl - 

(b - a)~ 

which is uniquely specified by (a,b, p); therefore for given p, K(fl) is a 
concave function which shows that there exists exactly two values/30 and/31 
such that K(B) = K~. 

Now on simple cubic lattices the critical temperatures are determined 
by K(B0) = K ( f i l ) =  K~ and K ( / 3 2 ) = - K ~ .  For the triangular lattice 
K(/3o) = K(B1) = Kc and there is some /3 so that K(fi)  < 0 for fl >/3.  
However, the antiferromagnetic model does not undergo any phase transi- 
tion at/3 < oo (Wannier(13) ). 
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